Exercise 2.5.4

For Laplace's equation inside a circular disk $(r \leq a)$, using (2.5.45) and (2.5.47), show that

$$
u(r, \theta)=\frac{1}{\pi} \int_{-\pi}^{\pi} f(\bar{\theta})\left[-\frac{1}{2}+\sum_{n=0}^{\infty}\left(\frac{r}{a}\right)^{n} \cos n(\theta-\bar{\theta})\right] d \bar{\theta} .
$$

Using $\cos z=\operatorname{Re}\left[e^{i z}\right]$, sum the resulting geometric series to obtain Poisson's integral formula.

Solution

Here we will solve the Laplace equation inside a disk.

$$
\begin{aligned}
& \nabla^{2} u=\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial u}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}=0, \quad r \leq a, 0 \leq \theta \leq 2 \pi \\
& u(a, \theta)=f(\theta) \\
& u(r, \theta) \text { bounded as } r \rightarrow 0
\end{aligned}
$$

Because the boundary condition of the Laplace equation is prescribed on a circle, the method of separation of variables can be applied. Assume a product solution of the form $u(r, \theta)=R(r) \Theta(\theta)$ and substitute it into the PDE.

$$
\frac{1}{r} \frac{\partial}{\partial r}\left(r \frac{\partial u}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \theta^{2}}=0 \quad \rightarrow \quad \frac{1}{r} \frac{\partial}{\partial r}\left[r \frac{\partial}{\partial r}[R(r) \Theta(\theta)]\right]+\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \theta^{2}}[R(r) \Theta(\theta)]=0
$$

Proceed to separate variables.

$$
\frac{\Theta}{r} \frac{d}{d r}\left(r \frac{d R}{d r}\right)+\frac{R}{r^{2}} \frac{d^{2} \Theta}{d \theta^{2}}=0
$$

Multiply both sides by $r^{2} /[R(r) \Theta(\theta)]$.

$$
\frac{r}{R} \frac{d}{d r}\left(r \frac{d R}{d r}\right)+\frac{1}{\Theta} \frac{d^{2} \Theta}{d \theta^{2}}=0
$$

Bring the second term to the right side. (The final answer will be the same regardless which side the minus sign is on.)

$$
\underbrace{\frac{r}{R} \frac{d}{d r}\left(r \frac{d R}{d r}\right)}_{\text {function of } r}=\underbrace{-\frac{1}{\Theta} \frac{d^{2} \Theta}{d \theta^{2}}}_{\text {function of } \theta}
$$

The only way a function of r can be equal to a function of θ is if both are equal to a constant λ.

$$
\frac{r}{R} \frac{d}{d r}\left(r \frac{d R}{d r}\right)=-\frac{1}{\Theta} \frac{d^{2} \Theta}{d \theta^{2}}=\lambda
$$

As a result of applying the method of separation of variables, the Laplace equation has been reduced to two ODEs - one in r and one in θ.

$$
\left.\begin{array}{rl}
\frac{r}{R} \frac{d}{d r}\left(r \frac{d R}{d r}\right) & =\lambda \\
-\frac{1}{\Theta} \frac{d^{2} \Theta}{d \theta^{2}} & =\lambda
\end{array}\right\}
$$

Periodic boundary conditions are assumed for Θ, since the solution and its slope in the θ-direction are expected to be the same at $\theta=0$ and $\theta=2 \pi$.

$$
\begin{aligned}
\Theta(0) & =\Theta(2 \pi) \\
\frac{d \Theta}{d \theta}(0) & =\frac{d \Theta}{d \theta}(2 \pi)
\end{aligned}
$$

Values of λ for which nontrivial solutions of the preceding equations exist are called the eigenvalues, and the solutions themselves are known as the eigenfunctions. Suppose first that λ is positive: $\lambda=\alpha^{2}$. The ODE for Θ becomes

$$
\frac{d^{2} \Theta}{d \theta^{2}}=-\alpha^{2} \Theta
$$

The general solution is written in terms of sine and cosine.

$$
\Theta(\theta)=C_{1} \cos \alpha \theta+C_{2} \sin \alpha \theta
$$

Take the derivative of it.

$$
\Theta^{\prime}(\theta)=\alpha\left(-C_{1} \sin \alpha \theta+C_{2} \cos \alpha \theta\right)
$$

Apply the boundary conditions to obtain a system of equations involving C_{1} and C_{2}.

$$
\begin{aligned}
& \Theta(0)= C_{1}=C_{1} \cos 2 \pi \alpha+C_{2} \sin 2 \pi \alpha=\Theta(2 \pi) \\
& \Theta^{\prime}(0)=\alpha\left(C_{2}\right)=\alpha\left(-C_{1} \sin 2 \pi \alpha+C_{2} \cos 2 \pi \alpha\right)=\Theta^{\prime}(2 \pi) \\
&\left\{\begin{array}{l}
C_{1}=C_{1} \cos 2 \pi \alpha+C_{2} \sin 2 \pi \alpha \\
C_{2}=-C_{1} \sin 2 \pi \alpha+C_{2} \cos 2 \pi \alpha
\end{array}\right. \\
&\left\{\begin{array}{l}
C_{1}(1-\cos 2 \pi \alpha)=C_{2} \sin 2 \pi \alpha \\
C_{2}(1-\cos 2 \pi \alpha)=-C_{1} \sin 2 \pi \alpha
\end{array}\right.
\end{aligned}
$$

These equations are satisfied if $\alpha=n$, where $n=1,2, \ldots$. The positive eigenvalues are thus $\lambda=n^{2}$, and the eigenfunctions associated with them are

$$
\Theta(\theta)=C_{1} \cos \alpha \theta+C_{2} \sin \alpha \theta \quad \rightarrow \quad \Theta_{n}(\theta)=C_{1} \cos n \theta+C_{2} \sin n \theta .
$$

With this formula for λ, the ODE for R becomes

$$
\begin{gathered}
\frac{r}{R} \frac{d}{d r}\left(r \frac{d R}{d r}\right)=n^{2} \\
r^{2} \frac{d^{2} R}{d r^{2}}+r \frac{d R}{d r}-n^{2} R=0 .
\end{gathered}
$$

This ODE is equidimensional, so the general solution is of the form $R(r)=r^{k}$. Find its derivatives

$$
R(r)=r^{k} \quad \rightarrow \quad \frac{d R}{d r}=k r^{k-1} \quad \rightarrow \quad \frac{d^{2} R}{d r^{2}}=k(k-1) r^{k-2}
$$

and substitute them into the equation.

$$
r^{2} k(k-1) r^{k-2}+r k r^{k-1}-n^{2} r^{k}=0
$$

$$
k(k-1) r^{k}+k r^{k}-n^{2} r^{k}=0
$$

Divide both sides by r^{k}.

$$
\begin{gathered}
k(k-1)+k-n^{2}=0 \\
k^{2}-n^{2}=0 \\
k= \pm n
\end{gathered}
$$

Consequently,

$$
R(r)=C_{3} r^{-n}+C_{4} r^{n} .
$$

Since u remains finite as $r \rightarrow 0$, we require that $C_{3}=0$.

$$
R(r)=C_{4} r^{n}
$$

Suppose secondly that λ is zero: $\lambda=0$. The ODE for Θ becomes

$$
\Theta^{\prime \prime}=0 .
$$

Integrate both sides with respect to θ.

$$
\Theta^{\prime}=C_{5}
$$

Integrate both sides with respect to θ once more.

$$
\Theta(\theta)=C_{5} \theta+C_{6}
$$

Apply the boundary conditions to obtain a system of equations involving C_{5} and C_{6}.

$$
\begin{aligned}
\Theta(0) & =C_{6}=2 \pi C_{5}+C_{6}=\Theta(2 \pi) \\
\Theta^{\prime}(0) & =C_{5}
\end{aligned}=C_{5}=\Theta^{\prime}(2 \pi), ~ \$
$$

The first equation implies that $C_{5}=0$ and C_{6} is arbitrary, and the second equation gives no information.

$$
\Theta(\theta)=C_{6}
$$

Since $\Theta(\theta)$ is nonzero, zero is an eigenvalue; the eigenfunction associated with it is $\Theta_{0}(\theta)=1$. Now solve the ODE for R with $\lambda=0$.

$$
\frac{d}{d r}\left(r \frac{d R}{d r}\right)=0
$$

Integrate both sides with respect to r.

$$
r \frac{d R}{d r}=C_{7}
$$

Divide both sides by r.

$$
\frac{d R}{d r}=\frac{C_{7}}{r}
$$

Integrate both sides with respect to r once more.

$$
R(r)=C_{7} \ln r+C_{8}
$$

For u to remain finite as $r \rightarrow 0$, we require that $C_{7}=0$.

$$
R(r)=C_{8}
$$

Suppose thirdly that λ is negative: $\lambda=-\beta^{2}$. The ODE for Θ becomes

$$
\frac{d^{2} \Theta}{d \theta^{2}}=\beta^{2} \Theta
$$

The general solution is written in terms of hyperbolic sine and hyperbolic cosine.

$$
\Theta(\theta)=C_{9} \cosh \beta \theta+C_{10} \sinh \beta \theta
$$

Take the derivative of it.

$$
\Theta^{\prime}(\theta)=\beta\left(C_{9} \sinh \beta \theta+C_{10} \cosh \beta \theta\right)
$$

Apply the boundary conditions to obtain a system of equations involving C_{9} and C_{10}.

$$
\begin{gathered}
\Theta(0)=C_{9}=C_{9} \cosh 2 \pi \beta+C_{10} \sinh 2 \pi \beta=\Theta(2 \pi) \\
\Theta^{\prime}(0)=\beta\left(C_{10}\right)=\beta\left(C_{9} \sinh 2 \pi \beta+C_{10} \cosh 2 \pi \beta\right)=\Theta^{\prime}(2 \pi) \\
\left\{\begin{array}{c}
C_{9}=C_{9} \cosh 2 \pi \beta+C_{10} \sinh 2 \pi \beta \\
C_{10}=C_{9} \sinh 2 \pi \beta+C_{10} \cosh 2 \pi \beta
\end{array}\right. \\
\left\{\begin{array}{c}
C_{9}(1-\cosh 2 \pi \beta)=C_{10} \sinh 2 \pi \beta \\
C_{10}(1-\cosh 2 \pi \beta)=C_{9} \sinh 2 \pi \beta
\end{array}\right.
\end{gathered}
$$

No nonzero value of β satisfies these equations, so $C_{9}=0$ and $C_{10}=0$. The trivial solution $\Theta(\theta)=0$ is obtained, so there are no negative eigenvalues. According to the principle of superposition, the general solution to the PDE for u is a linear combination of $R(r) \Theta(\theta)$ over all the eigenvalues.

$$
\begin{equation*}
u(r, \theta)=A_{0}+\sum_{n=1}^{\infty} r^{n}\left(A_{n} \cos n \theta+B_{n} \sin n \theta\right) \tag{1}
\end{equation*}
$$

Apply the boundary condition $u(a, \theta)=f(\theta)$ to determine the coefficients, A_{0}, A_{n}, and B_{n}.

$$
\begin{equation*}
u(a, \theta)=A_{0}+\sum_{n=1}^{\infty} a^{n}\left(A_{n} \cos n \theta+B_{n} \sin n \theta\right)=f(\theta) \tag{2}
\end{equation*}
$$

To find A_{0}, integrate both sides of equation (2) with respect to θ from 0 to 2π.

$$
\int_{0}^{2 \pi}\left[A_{0}+\sum_{n=1}^{\infty} a^{n}\left(A_{n} \cos n \theta+B_{n} \sin n \theta\right)\right] d \theta=\int_{0}^{2 \pi} f(\theta) d \theta
$$

Split up the integral on the left and bring the constants in front.

$$
\begin{gathered}
A_{0} \int_{0}^{2 \pi} d \theta+\sum_{n=1}^{\infty} a^{n}(A_{n} \underbrace{\int_{0}^{2 \pi} \cos n \theta d \theta}_{=0}+B_{n} \underbrace{\int_{0}^{2 \pi} \sin n \theta d \theta}_{=0})=\int_{0}^{2 \pi} f(\theta) d \theta \\
A_{0}(2 \pi)=\int_{0}^{2 \pi} f(\theta) d \theta
\end{gathered}
$$

So then

$$
\begin{equation*}
A_{0}=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(\theta) d \theta \tag{3}
\end{equation*}
$$

To find A_{n}, multiply both sides of equation (2) by $\cos m \theta$, where m is an integer,

$$
A_{0} \cos m \theta+\sum_{n=1}^{\infty} a^{n}\left(A_{n} \cos n \theta \cos m \theta+B_{n} \sin n \theta \cos m \theta\right)=f(\theta) \cos m \theta
$$

and then integrate both sides with respect to θ from 0 to 2π.

$$
\int_{0}^{2 \pi}\left[A_{0} \cos m \theta+\sum_{n=1}^{\infty} a^{n}\left(A_{n} \cos n \theta \cos m \theta+B_{n} \sin n \theta \cos m \theta\right)\right] d \theta=\int_{0}^{2 \pi} f(\theta) \cos m \theta d \theta
$$

Split up the integral on the left and bring the constants in front.

$$
\begin{array}{r}
A_{0} \underbrace{\int_{0}^{2 \pi} \cos m \theta d \theta}_{=0}+\sum_{n=1}^{\infty} a^{n}(A_{n} \int_{0}^{2 \pi} \cos n \theta \cos m \theta d \theta+B_{n} \underbrace{\int_{0}^{2 \pi} \sin n \theta \cos m \theta d \theta}_{=0}) \\
=\int_{0}^{2 \pi} f(\theta) \cos m \theta d \theta
\end{array}
$$

Because the cosine functions are orthogonal, the second integral on the left is zero if $n \neq m$. As a result, every term in the infinite series vanishes except for the $n=m$ one.

$$
\begin{gathered}
a^{n} A_{n} \int_{0}^{2 \pi} \cos ^{2} n \theta d \theta=\int_{0}^{2 \pi} f(\theta) \cos n \theta d \theta \\
a^{n} A_{n}(\pi)=\int_{0}^{2 \pi} f(\theta) \cos n \theta d \theta
\end{gathered}
$$

So then

$$
\begin{equation*}
A_{n}=\frac{1}{\pi a^{n}} \int_{0}^{2 \pi} f(\theta) \cos n \theta d \theta \tag{4}
\end{equation*}
$$

To find B_{n}, multiply both sides of equation (2) by $\sin m \theta$, where m is an integer,

$$
A_{0} \sin m \theta+\sum_{n=1}^{\infty} a^{n}\left(A_{n} \cos n \theta \sin m \theta+B_{n} \sin n \theta \sin m \theta\right)=f(\theta) \sin m \theta
$$

and then integrate both sides with respect to θ from 0 to 2π.

$$
\int_{0}^{2 \pi}\left[A_{0} \sin m \theta+\sum_{n=1}^{\infty} a^{n}\left(A_{n} \cos n \theta \sin m \theta+B_{n} \sin n \theta \sin m \theta\right)\right] d \theta=\int_{0}^{2 \pi} f(\theta) \sin m \theta d \theta
$$

Split up the integral on the left and bring the constants in front.

$$
\begin{aligned}
& A_{0} \underbrace{\int_{0}^{2 \pi} \sin m \theta d \theta}_{=0}+\sum_{n=1}^{\infty} a^{n}(A_{n} \underbrace{\int_{0}^{2 \pi} \cos n \theta \sin m \theta d \theta}_{=0}+B_{n} \int_{0}^{2 \pi} \sin n \theta \sin m \theta d \theta) \\
&=\int_{0}^{2 \pi} f(\theta) \sin m \theta d \theta
\end{aligned}
$$

Because the sine functions are orthogonal, the third integral on the left is zero if $n \neq m$. As a result, every term in the infinite series vanishes except for the $n=m$ one.

$$
\begin{gathered}
a^{n} B_{n} \int_{0}^{2 \pi} \sin ^{2} n \theta d \theta=\int_{0}^{2 \pi} f(\theta) \sin n \theta d \theta \\
a^{n} B_{n}(\pi)=\int_{0}^{2 \pi} f(\theta) \sin n \theta d \theta
\end{gathered}
$$

So then

$$
\begin{equation*}
B_{n}=\frac{1}{\pi a^{n}} \int_{0}^{2 \pi} f(\theta) \sin n \theta d \theta \tag{5}
\end{equation*}
$$

Now substitute equations (3), (4), and (5) into equation (1).

$$
\begin{aligned}
u(r, \theta) & =A_{0}+\sum_{n=1}^{\infty} r^{n}\left(A_{n} \cos n \theta+B_{n} \sin n \theta\right) \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} f(\bar{\theta}) d \bar{\theta}+\sum_{n=1}^{\infty} r^{n}\left[\left(\frac{1}{\pi a^{n}} \int_{0}^{2 \pi} f(\bar{\theta}) \cos n \bar{\theta} d \bar{\theta}\right) \cos n \theta+\left(\frac{1}{\pi a^{n}} \int_{0}^{2 \pi} f(\bar{\theta}) \sin n \bar{\theta} d \bar{\theta}\right) \sin n \theta\right] \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} f(\bar{\theta}) d \bar{\theta}+\frac{1}{\pi} \sum_{n=1}^{\infty} \frac{r^{n}}{a^{n}}\left[\int_{0}^{2 \pi} f(\bar{\theta}) \cos n \theta \cos n \bar{\theta} d \bar{\theta}+\int_{0}^{2 \pi} f(\bar{\theta}) \sin n \theta \sin n \bar{\theta} d \bar{\theta}\right] \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} f(\bar{\theta}) d \bar{\theta}+\frac{1}{\pi} \sum_{n=1}^{\infty}\left(\frac{r}{a}\right)^{n} \int_{0}^{2 \pi} f(\bar{\theta})(\cos n \theta \cos n \bar{\theta}+\sin n \theta \sin n \bar{\theta}) d \bar{\theta} \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} f(\bar{\theta}) d \bar{\theta}+\frac{1}{\pi} \int_{0}^{2 \pi} f(\bar{\theta}) \sum_{n=1}^{\infty}\left(\frac{r}{a}\right)^{n} \cos (n \theta-n \bar{\theta}) d \bar{\theta} \\
& =\frac{1}{\pi} \int_{0}^{2 \pi} f(\bar{\theta})\left[\frac{1}{2}+\sum_{n=1}^{\infty}\left(\frac{r}{a}\right)^{n} \operatorname{Re} e^{i n(\theta-\bar{\theta})}\right] d \bar{\theta} \\
& =\frac{1}{\pi} \int_{0}^{2 \pi} f(\bar{\theta})\left[\frac{1}{2}+\operatorname{Re} \sum_{n=1}^{\infty}\left(\frac{r}{a} e^{i(\theta-\bar{\theta})}\right)^{n}\right] d \bar{\theta} \\
& =\frac{1}{\pi} \int_{0}^{2 \pi} f(\bar{\theta})\left[-\frac{1}{2}+\operatorname{Re} \sum_{n=0}^{\infty}\left(\frac{r}{a} e^{i(\theta-\bar{\theta})}\right)^{n}\right] d \bar{\theta} \\
& =\frac{1}{\pi} \int_{0}^{2 \pi} f(\bar{\theta})\left[-\frac{1}{2}+\operatorname{Re} \frac{1}{\left.1-\frac{r}{a} e^{i(\theta-\bar{\theta})}\right]} d \bar{\theta}\right. \\
& =\frac{1}{\pi} \int_{0}^{2 \pi} f(\bar{\theta})\left[-\frac{1}{2}+\operatorname{Re} \frac{\frac{r}{a} \cos (\theta-\bar{\theta})-i \frac{r}{a} \sin (\theta-\bar{\theta})}{\left.1-\frac{1-\frac{r}{a} \cos (\theta-\bar{\theta})+i \frac{r}{a} \sin (\theta-\bar{\theta})}{1-\bar{\theta}} \sin \right)+i \frac{r}{a} \sin (\theta-\bar{\theta})}\right] d \bar{\theta} \\
& =\frac{1}{\pi} \int_{0}^{2 \pi} f(\bar{\theta})\left[-\frac{1}{2}+\operatorname{Re} \frac{1-\frac{r}{a} \cos (\theta-\bar{\theta})+i \frac{r}{a} \sin (\theta-\bar{\theta})}{\left[1-\frac{r}{a} \cos (\theta-\bar{\theta})\right]^{2}+\frac{r^{2}}{a^{2}} \sin { }^{2}(\theta-\bar{\theta})}\right] d \bar{\theta} \\
& =\frac{1}{\pi} \int_{0}^{2 \pi} f(\bar{\theta})\left[-\frac{1}{2}+\operatorname{Re} \frac{1-\frac{r}{a} \cos (\theta-\bar{\theta})+i \frac{r}{a} \sin (\theta-\bar{\theta})}{1-\frac{2 r}{a} \cos (\theta-\bar{\theta})+\frac{r^{2}}{a^{2}}}\right] d \bar{\theta}
\end{aligned}
$$

Continue simplifying the right side.

$$
\begin{aligned}
u(r, \theta) & =\frac{1}{\pi} \int_{0}^{2 \pi} f(\bar{\theta})\left[-\frac{1}{2}+\frac{1-\frac{r}{a} \cos (\theta-\bar{\theta})}{1-\frac{2 r}{a} \cos (\theta-\bar{\theta})+\frac{r^{2}}{a^{2}}}\right] d \bar{\theta} \\
& =\frac{1}{\pi} \int_{0}^{2 \pi} f(\bar{\theta}) \frac{-1+\frac{2 r}{a} \cos (\theta-\bar{\theta})-\frac{r^{2}}{a^{2}}+2-\frac{2 r}{a} \cos (\theta-\bar{\theta})}{2\left[1-\frac{2 r}{a} \cos (\theta-\bar{\theta})+\frac{r^{2}}{a^{2}}\right]} d \bar{\theta} \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} f(\bar{\theta}) \frac{1-\frac{r^{2}}{a^{2}}}{1-\frac{2 r}{a} \cos (\theta-\bar{\theta})+\frac{r^{2}}{a^{2}}} d \bar{\theta} \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} f(\bar{\theta}) \frac{a^{2}-r^{2}}{a^{2}-2 a r \cos (\theta-\bar{\theta})+r^{2}} d \bar{\theta}
\end{aligned}
$$

Therefore,

$$
u(r, \theta)=\frac{a^{2}-r^{2}}{2 \pi} \int_{0}^{2 \pi} \frac{f(\bar{\theta})}{a^{2}-2 a r \cos (\theta-\bar{\theta})+r^{2}} d \bar{\theta}
$$

Note that $f(\theta)$ was defined for $0 \leq \theta \leq 2 \pi$. If one defines it for $-\pi \leq \theta \leq \pi$, then the limits of integration will go from $-\pi$ to π instead.

